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Abstrsct—The continuum theory of porous materials respecting the internal discontinuity of these materials, is
formulated in this paper. It is shown that porous material can be studied in two classes of continua (continua
associated with volume and mass average quantities), five different kinds existing in each class. The relation of
these classes and kinds to various parts and configurations of the porous medium is defined. Transformation
equations between the classes and Kinds are determined. The value of the principle of superposition of
“components” is discussed and the principle of superposition of states is formulated.

1.INTRODUCTION
Porous materials are usually studied by aid of mixture theory (see, e.g.[1-3]1). This procedura
feads to a whole series of difficulties and inaccuracies which were pointed out in[6, 7). In these
two studies it was shown that a continuum (or more accurately macrocontinuum) model can be
co-ordinated to a porous material only if the following condition is satisfied in measuring the
properties of the medium:

I<L (LD

where / is the internal characteristic length of the porous medium (e.g. the mean radius of the
pores) and L is the characteristic length of measuring probe (e.g. the wavelength of an acoustic
signal). If we measure the property in accordance with condition (1.1), the measured values can
then be associated with a continuum model of the material. Several such models, which are
created if the volume average of the property is being measured, were discussed in[7].
However, from the results in[6] it follows that in balance equations not only volume averages,
but also mass averages of intensive variables occur together. Therefore, in the subsequent
section we shall seek to determine the possible classes and types of continua which are
associated with volume and mass averages alike, we shall attempt to express their mutual
relationship and we shall evaluate all obtained results from the point of view of their
interpretability and measurability.

2.MATERIALS AND ITS MODELS

Part A of a porous material at time ¢ occupies a region ® which consists of volume AV and
its surface AV, Region & consists of a continuous region ®; (with the volume AV,) which
corresponds to a solid skeleton, and of N discrete regions ®,' (with volumes AVy) cor-
responding to the pore space. The fluid in the pore space is in two different phases, liquid and
gas. Let us, therefore, designate the individual R, that the first X corresponds to the liquid and
the remaining ones to the gas. It holds that

2 N X
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AV= iAV,, AV2=§;AV2"= $ avye.
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1Biot's pioneering work[4] is likewise based on 2 mixture mode! (see[S]).
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The total mass of 4 is AM and the mass contained in &, or &, or ®,* is AM, or AM,’ or
AM$°, respectively and it holds that

2 N 11
AM = 21 AM,, AM, = 2; AM = Y AMy,

X N
AM;I = ;l AMzi, Mz" = ey AMzi. (2.2)

From now on we shall distinguish between measurements at the macropoint of the material
(i.e. if condition (1.1) is satisfied) and at the micropoint (i.e. if condition (1.1) is not satisfied).
We shall denote an intensive variable measured at a micropoint of ® or &, or &,’ as A = A(r,
1) for r € RY) or A;=A(r,!) (for r € R)), or Ay = A)'(r,t) (for r € R;). It holds that
A=AV A, where A;=A,'v... v AN If we define the unit functions as

~lforreR, _1forre R,

i
D.r = NOforreR,’ D/ 0= 0 forr# Ry @3)
for an arbitrary r it then holds that
2>D.=1, Z:D.'=D.,A=2 A%, Al=D.A,
A3 =3 A%, A/ =D)jA). 2.4)
i

If we are carrying out the measurements in accordance with condition (1.1), depending on
the nature of these measurements we may then define various types of continua which will be
associated with the following volume and mass averages of the variables:t

o
(A)Elunﬁ,LVA av @.5)
(A% = lim ] A4V 2.6)
a AV AV a
(A'*)slimlf Ag*dV %)
2 AV Av 2 .
o
(Ay)q =lim AV, A, dv (2.8)
(Af) = hm— f A dV 29)
{A}shmAMf AdM 2.10)
{A}shm f A*dM @.11)
{Az“}slimm f A% M @.12)
{A,} shm—f A, dM @.13)
{A‘}iﬁlim—-l—-r A dM @.14)
P AMY Jany 2T '

tUnless otherwise indicated the limits are calculated for //L-0.
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The continua ¥, and X, are associated with the quantities defined by relations (2.5) and (2.10).
The continua X%, and X%y, X1%, and ¥i%), ¥, and H.; X4, and Xy correspond to the quantities
(2.6) and (2.11), (2.7) and (2.12), (2.8) and (2.13), and (.29) and (2.14), respectively.

If we define the following volume and mass concentrations

AV,, AV)

8, =(D.)=lim 732, &' =(D;) = lim 3+ @.15)
c.={D,} = limAMe ‘Z"A’{, ¢ =Dy} = lim M2 AA‘:; 2.16)
then from the relations (2.1)~(2.16) it follows that
(A)= 2..: (A2, (A% = 8,(Aa)ay (AY) = z (A)'*) = 8x(Ay)
= 2‘ 8/(AY), (A)f*) = 8(AL') 2.17)
{4} = 3 {42}, {42} = c{Ad)., (A8} = 3 {4%) = cifAdky
=2 o{Ad), {4 = e}, 2.18)

g 5, =1, }; 8 =8, 2 . =1, ; ¢ =cy (2.19)

For the time being we have defined the two main classes of continua: the continua
corresponding to measurements in characteristic volumes and masses. Within each class we
have distinguished five different types of continua and eqns (2.17) and (2.18) determine the
relations between the individual types of a single class. However, it still is not clear which of
the individual measurements can be realized or, in other words, which continua can be

interpreted in terms of measurable quantities. This problem will be discussed in the next
section.

3. INTERPRETATION OF CONTINUUM MODELS

Figure 1 illustrates the porous material 4. 4 can be divided (at least in one’s mind) into
materials 4, and A;, which correspond to a solid skeleton and a fluid in the pore space. .4, can
further be divided into N materials 4,', each of which corresponds to a certain pore or its part
(i.e. the regions ®,'). From #, we can now proceed to material 4*. 41 is material 4, in region
R (i.e. there is a vacuum in ®,) and similarly #3 is 4, in region R (i.c. there is a vacuum in &),
If we are considering 4, in R, we then obtain material 4,'*, i.e. a material in which there is a
vacuum everywhere within the boundaries of 54AV except for the region R, If we are
measuring at the micropoints of material 4,, 4/, 4%, and 4,'*, we then obtain the quantities
A,, A), A% and A,'*, respectively. If we are measuring at the macropoints of .4, we then obtain
either (A) or {A}, i.e the continua ¥, and ¥, are associated with 4. The results of the
measurements at the macropoints of 4, are the values (A,), and {A,}., i.. the continua ¥,
and X, are associated with 4,. The measurements at macropoint ;' lead to (4,'),’ or {A,'},'
and, therefore, to the continua %%, or ¥};, Measurements at the macropoints of materials 4%
and A, lead to the values (A*) and {A%}, (A,'*) and {A,'*}, i.c. to continua X%, and H%;, 1Y),
it and XY,

In principle, the measurements of the quantities (A) and {A} and of the concentrations §,,
8,, ¢, and ¢, can be realized under all circumstances. Under certain circumstances, in the case
of porous materials, we may measure the quantities (4,); and {A;},, or (A}), or (A;'),' and
{A)}), i.e we are able to measure the properties of the solid phase of a porous medium, or of
the absolutely dry solid skeleton, or of the fluid in an individual pore (or in its part). By these
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Fig. 1.

circumstances we understand certain conditions which must be satisfied during the experiment
(e.g. in measuring {A,), the boundary conditions of region ®, in ® must be satisfied, etc.). The
materials #,, #% and #,"* are quite fictitious and unrealizable. It is impossible, for instance, to
distribute the ®,"s, filled with fluid, in the vacuum region & and at the same time preserve the
boundary conditions, interaction forces, etc. which existed in 4. Neither is it possible to
measure the quantities {A%} in material 4%, because the latter has mass AM;, whereas {A%} is
associated with mass AM. To summarize, we may say that only the continua ¥, (with the
quantities (A)) and %} ({A}) can be interpreted directly in terms of measurable quantities. With
certain limitations (see above) we may also claim this in case of continua ¥, ((A;)y), ¥
{Ah), X (AT, iy ((AS)),) and iy ({A;'),'). The remaining continua (and the correspond-
ing quantities) have only an auxiliary, or more accurately, a derived character (see eqns (2.17)
and (2.18)).1

If we consider conditions (2.1)34675 and (2.2),34, We may then define the properties (A,'),),
{A,'},! and the concentrations 8, and c,’ of the liquid, as well as the properties (A4,7),”",
{A," 1" and concentrations 8,” and c,” of the gas:

N
; l 8,(A), = ¢, (A", 3.0
=X+

x N . -
gx 5, (A) ) = &' (A1),

x . .. s N Iy fe x
2 oAk = ! {A'), § Al = 6" {4}
i=! =X+l
w1 AV . AMe
5, "hm_AV , €¥ =1lim AM (w=11I),

Ir 4
2 8" =¢y, z &’ =,
o=l wn]

4 RELATIONS BETWEEN THE VOLUME AND MASS AVERAGE VARIABLES
First of all, we shall define the densities measured at the micropoints of the materials 4, 4.,

+The relation of the individual continua to the concepts used in the theory of mixture will be discussed in the last
section.
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ME, My and M.
AM AM,
p= Jim 3y e = Jim BV
AM, AM; AM,
*= lim == p, —% p,i* —_—Z 4.1
i fim gyl = S ey o= Iy D
The densities at the macropoints then read
AM, AM, . _. AM,
(P) = hm <pu)a hm AV ’ (pa) - AV s (4'2)

. AM. AMy
(p2) =lim A—r. (pr'*) =lim =g

Since we assumed that measurements of the elements of mass and volume could be realized,
we may claim all the densities in eqns (4.2) to be measurable. It holds that (see (2.15), (2.16),

(2.18), (4.2))
Ca = (pEN(p), 8a = (PEN(Pa)as
&' = (p™M(p), 8 = {p,"*M(py')y, 4.3)
8a(Pa)a = Calp), 8 = (pd' ) = ¢ (p).

Equations (2.5)=2.19), (4.2) and (4.3) now yield

(pA) = (p}{A} = z (p2A.) = (p1A) + 5;, (p"*Ay)

= ; 8a(puAu) = 81(plAl) + ; 82i(p2“42i)2‘9 (404)

(ptA.) = (pEMA.). = (pH A%} 4.5)

(PafAa) = (Pa)afAc}e = (pa)aCa {Al} = (p)5,7{AL} (4.6)

(p'* A7) = (p{ AL} = (p/*HAY ) @7

(p'Ar'} = (pr' ) {AL'} = (p)(8) AL *} = (') (c2) A%} 4.8

Provided we are able to state the hypothesis of microlocal homogeneity for the solid as well
as the fluid, i.e. provided

pi(r) = conmst., p,'(r) = p,/(r) = const., 4.9)

it follows from eqns (2.8) and (4.6); that
(As)a ={Ad)er (4.10)
Equations (2.17);, (2.18),, (2.19);4 and (4.10) then yield
{A}=(A)=(c1— 8:)(A)s = (Az)). @.11)

Here it should be pointed out that conditions (4.9) can only be applied to a dry and liquid
saturated porous medium.

5. REFERENCE STATES

The theory of mixture, built on the principle of superposition of components tends towards
one very old dream of alchymists: it is attempting to express the property of the whole as a
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function of the properties of its parts. Relations (2.17), (2.18) and the analysis in Section 3
indicate that this is, in principle, possible even with porous materials, provided we are able to
measure the quantities (A,), and (Ay’) (or {4,}; and {A,'}y'). However, we did point out that it
is quite difficult to make these measurements. For example, the water in pores is not identical
with “free” water. For this reason the author is of the opinion that it is more convenient to
replace the superposition of components by the superposition of reference states. As regards
porous media, we are directly offered two realizable (and more or less reproducable[7]) states:
a dry and liquid-saturated porous material.

For the quantities (A) playing the role of primitive terms in the given theory (independent
variables), or the role of directly measurable quantities in an experiment, it holds that[7]

(A)=8§'(A)s + 85" (A)p ¢.1)

where the indices S and D indicate quantities measured in the first and second reference state
(i.e. in the liquid-saturated and dry porous material), 8,' and &,” represent the liquid and gas
contents of the pore space:

AVy®

L S ¥ U
&° =86,""8"=Ilm v,

(w=1I1n, i 8 = 1. (52)

Rule (5.1) was derived under a single limiting assumption that the material does not swell. We
shall also apply this assumption here in deriving the relation {A} = f({A}s, {A}p). Besides this,
we shall assume that the liquid and the gas are microlocally homogeneous, i.e. that

i P ’1-. Ale_o AMIS 5
P ={p' 1 —llﬂlm—llm“—Lsz ffori=1,.... X)
iy i . AMYP L
(e = (o) =V =lim =g ori=X +1,..., N). (5.3)
2

Here AM,"S and AM," represent the mass of the liquid in the liquid-saturated material and of
the gas in the dry material, respectively.
Equations (5.2) and (5.3) vield,

b AV AM o AV AMT
8 =lim AV, llmA—Mzg, &1 =lim AV, llmm. 5.4)

In agreement with eqns (2.18) and (3.1) we may write for the actual state of the material and for
both reference states

{A} = c{Ah + ¢ {A ] + T{AM L,
{A}p = c/P{A s} + c,"™P{A Y, (5.5)
{A}s = ¢/’ {Ah + .B{A ],

where

¢,? =lim :g‘ L of = lim%&,
11D 18
¢, =lim %3-, ¢," =lim %&Mg' 5.6)

where the masses of the liquid-saturated and dry media are
AMS = AM1 + AM}IS and AMP = AM; + AM:HD. 5.7

respectively. We may now say that (see eqns (5.2)-(5.7)) property A of an arbitrary actual state
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is

{A}=5P'£€2_;{A}s+5p"%)2{/ﬂu 538)

In [7] the dependence of some drived (indirectly measureable) quantities (A) on the values
in reference states was studied (particular attention being paid to the strain tensor and material
constants). It follows from eqns (5.1) and (5.8) that all results valid for ¥, (see [7]) are as well
valid for ¥, if we make the transformation(A) - {A}, (A)s—{A}s, (A)p~>{Alp.

SPI - spf %’ 6PH - apﬂ' %Q

6. DISCUSSION

The presented theory tried to respect the following facts:

(1) Measurements cannot be carried out in dimensionless points. Any measurement is
associated with a finite volume or a finite mass.

(2) The validity of the principle of superposition of “components” is limited by the extent to
which the “components” can be separated.

The first fact led us to two classes of continua (continua associated with volume and mass
average quantities), each class being divided into five kinds. The relations between the kinds are
expressed by eqns (2.17) and (2.18). Under certain conditions the relation between the classes
(see (4.9) and (4.10)) has the form of (4.11). In the case of A = v (v is the velocity) this relation is
identical with the equation derived by Brenner([8]. Equations (4.4)-(4.8) can be understood as
relations between the densities of extensive variables and the specific values of these variables.
The description of heterogeneous materials in terms of averaged quantities is not a new idea. It
has been used, e.g. in papers{9] (for the description of general two-phase medium), [8, 10] (for
porous media), [11, 12] (for immiscible mixtures of fluids). However, I think that the present
article differs from the set of papers quoted above in one essential aspect—in the choice of
primitive terms of theory. In the papers{8-12] the role of primitive terms is played by the
variables measured in dimensionless -points—so-called ‘“‘exact” fields (e.g. the averaged
quantities are expressed in terms of the “‘exact” fields, etc.). This choice was refused by the
present paper (as it follows from all the arguments presented above). This methodological
difference has determined differences between the applied mathematical instruments. For
example, Drew[9] obtains continuously differentiable averaged functions from the ‘“‘exact”
variables by integrating over two volumes (see Reymond-Dubois Lemma). Here, it is supposed
that averaged quantities are continuously differentiable as soon as the condition (1.1) is
satisfied.t The difference mentioned above made the “program” of the present theory different
from analogous theories, too. I should like to determine the content of concepts and their
applicability limits before the derivation of balance equations. For example, the mass (or
volume) average velocity is employed in papers[8-12]. But we measure rather “the velocity of
averaging volume” (see [6, 7}).

The second fact forced us to replace the principle of superposition of components by the
principle of superposition of reference states (see (5.1) and (5.8)). The results of this paper can
also be understood to be a contribution to the argument conducted about the theory of mixtures
between the non-equilibrium thermodynamics and the rational thermomechanics. The tradi-
tional (micro-contunuum) mixture theory utilizes the concept of the so-called partial continuum.
In our macro-continuum formulations X%, and X%; correspond to these continua. Non-
equilibrium thermodynamics uses the principle of superposition (and, therefore, of the partial
continua) for balancing mass only. Of the partial quantities it thus uses only densities (or
concentrations) and diffusion velocities. As our analysis has been shown these quantities can be
measured in principle (the diffusion velocities by means of eqn (4.11)).% Rational ther-

1’[_'he variables A, A,, etc. ineqns (2.5)(2.14) are measured in micropoints, i.¢. in some averaging volumes from point of view
of “dimensionless” points.

{The chemical potentials of the “components” also enter the entropy balance. Chemists claim that they are able to
measure these as well,
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momechanics employ partial continua in balancing all quantities. They therefore use quantities
such as partial stress, partial heat flux, etc. Ooru analysis has shown that these quantities cannot
be interpreted, because in most cases they cannot be measured. This conclusion is formulated
only for porous materials, but the author is of the opinion that it is valid generally.
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